

Project – Designing, teaching and controlling a 4th hand

The Team

Walid Amanhoud

Anaïs Haget

Jacob Hernandez

Aude Billard

Hannes Bleuler

Mohamed Bouri

Jelena Godjevac

SWISS FOUNDATION FOR INNOVATION AND TRAINING IN SURGERY

Supporting

Guiding

3-handed laparoscopy surgery!

Photo | Surgical Skills Lab

From 2 to 3

Endoscope holders in laparoscopic surgery

Voice activated

Commanded by footswitch

All of these systems are tele-operated!

Only control in position – no control in force

4-handed laparoscopy surgery!

Photo | Surgical Skills Lab

Fully Autonomous System!

4-hands robotic system for industrial use, Asada's group, MIT (Parietti et al., ICRA 2016)

Our goal: shared-control for more dexterity in each arm

Project's Target

Foot workspace

SWISS FOUNDATION FOR INNOVATION AND TRAINING IN SURGERY

Project's Target

SWISS FOUNDATION FOR INNOVATION AND TRAINING IN SURGERY

Training Time

Hours

Simple, e.g. driving

Years

Complex e.g. organist

Envisioned implementation

Other alternatives

Backdrivability/control

• Foot print

Gravity compensation

Haptic feedback

Adopted solution

- Bipedal
- 5 active Dofs (XY and orientations)
- Large translational workspace
- Implements haptic feedback

First prototype

- > 5DoF & 3D Active Force Feedback
- *➤ Small 59x59x35 cm*
- ➤ Proof of concept to investigate psychophysics and motor control

Final prototype

Differential Mechanism Roll & Yaw -> 2x Torque for Isolated Motions

Exploring precision of control with the foot

Factor Evaluation of Feet Position Control with Visual Feedback

10 participants, 5 randomly selected for analysis

Full Factorial Design:

- ✓ Effect of DOF
- ✓ Visuomotor Transformation
- √ Foot Laterality
- ✓ Inter-subject variability (participant)

Exploring precision of control with the foot

Factor Evaluation of Feet Position Control with Visual Feedback

Factor	Levels
Foot Motions DOF ($lpha_i$)	X, Y , PITCH $(heta)$
Visual Feedback Orientations (eta_j)	Horizontal, Vertical
Foot Laterality (γ_k)	Left, Right
Participant (η_n)	P3, P4, P6, P11, P19

Exploring precision of control with the foot: results

Precision of control:

- Control in position is accurate: ~1cm
- Control of angular movement: ~5deg
- 50% variance across subjects

Speed of control:

- Speed of motion in position is fast: 50 mm/sec.
- Speed of angular motion slower: 20 deg/sec.
- Speed of motion of left foot slightly slower 15%

Precision in control of force and haptic perception at the foot?

Effect of increasing number of degrees of freedom controlled?

Mode of Control: Tele-operation

Mode of Control: Autonomous

Mode of Control: Autonomous

Mode of Control: Shared-control

Four Arm Laparoscopic Surgery Via Foot Interfaces

Website

https://4hands.epfl.ch/

Publications

- Amanhoud et al. (2019). A Dynamical System Approach to Motion and Force Generation in Contact Tasks. In Proceedings of Robotics, Science and Systems (RSS).
- Haget et al. (2019). Learning to control semi-autonomous robotic arms with your feet for four-handed laparoscopic surgery. Progress in Motor Control XII: Movement Improvement (PMC).
- Hernandez, J. et al. (2019) Four Hands Manipulation Via Feet Interfaces. In Proceedings of AAAI 2019 Fall Symposium Series. In Proceedings of AAAI Fall symposium series, 2019.
- Amanhoud et al. (2019). **Force Adaptation in Contact Tasks with Dynamical** Systems, *Submitted* to Int. Conf. on Robotics and Automation, ICRA 2020.

Follow-up project

Zeiss industrial grant (Billard) – 100K CHF, 2019-2021

Next Steps

Study of Motor Control

Precision of control at the foot in force and haptic perception

User study with surgeons

Robot Control

Extend shared control in force and position

Explore coordinated control to ease dexterity

More realistic scenario

More realistic scenario

